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Accordion lattice based on the Talbot effect
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We introduce an idea of producing an optical lattice relied on the Talbot effect. Our alternative scheme is
based on the interference of light behind a diffraction grating in the near-field regime. We demonstrate 1D
and 2D optical lattices with the simulations and experiments. This Talbot optical lattice can be broadly
used from quantum simulations to quantum information. The Talbot effect is usually used in lensless
optical systems, therefore it provides small aberrations.
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Optical lattices are of great importance in fields of quan-
tum many body systems and even in quantum applica-
tions such as quantum information technology[1−3]. An
experiment of ultra cold quantum gases in optical lat-
tices is attractive for quantum investigations in funda-
mental physics since it provides a light-matter interac-
tion in optical dipole forces[4,5], which can be both of
low-field and high-field seeking states[6]. The interaction
of bosonic atoms on the lattices, Bose-Hubbard model,
can be realized in optical lattices[7]. Storing atoms in
optical lattices can be used as a quantum register in a
Mott insulator phase[8], which is suggested as a quan-
tum computer[9−12]. Loading ultra cold atoms of Bose-
Einstein condensate (BEC)[13−15] in an optical lattice
was studied[16]. A study of ultra cold atoms in an opti-
cal lattice with dynamically variable periodicity allows us
to perform versatile experiments from quantum simula-
tions with a small lattice spacing to quantum information
with a large lattice spacing[17,18]. Therefore, an optical
lattice with real-time variable lattice spacings (accordion
lattice) is worth for studying. Among various schemes to
produce accordion lattices, the use of two parallel beams
encountered each other at the focal plane of a lens is an
excellent one[19,20].

We introduce an idea of producing an alternative opti-
cal lattice relied on the Talbot effect[21−25]. There were
some early proposed ideas and experiments of optical lat-
tice produced by the Talbot effect but with a binary
shape of the opening fraction (the ratio between the slit
width and the grating period) f = 0.5[26−28]. We study
the Talbot optical lattice with various opening fractions
(f) and grating periods (d) by the simulations and prove
our idea by the experiment with one condition (d = 200
µ m, f = 0.5). Talbot optical lattice is simple, and more
stable. Also, the main setup is usually used in lens less
optical systems, therefore it provides small aberrations.

We show briefly the construction of optical lattice by
using near-field diffraction pattern in the Talbot effect.
Assuming a plane wave with the wave number k propa-
gating along z-axis falls onto a diffraction grating at z =
0 (Fig. 1). With the grating has the periodic modulation
in the x direction, behind the grating at z = 0 the wave
will be transformed by the grating to be ψ(x, z = 0) =

T (x) exp(ikθx), in which T (x) =
∑

n

An exp (i2πnx/d) is

the grating transmission function, d is the grating pe-
riod and the coefficient An = sin (nπf) / (nπ) represents
the Fourier decomposition component of the periodic for
the grating with an opening fraction f . When the wave
propagates for a distance z behind the grating it acquires

an additional phase exp
(

i
√

k2 − k2
⊥
z
)

, where k⊥ is the

wave vector parallel to the x-axis. By using the parax-
ial approximation (k ≫ k⊥) the wave function can be
expressed as[24]

ψ (x, z) =
∑

n

An exp

(

inkdx−
in2πz

LT

)

, (1)

where n = 0,±1,±2, · · · , kd = 2π/d, and LT = d2/λ is
the Talbot length. The corresponding intensity ψ∗(x, z)
ψ (x, z) gives the near-field interference pattern, so-
called optical carpet[24]. This carpet can be consid-
ered as a 1D optical lattice (Fig. 2(a) inset). Similarly,

Fig. 1. (Color online) Experimental setup of the real-time
control optical lattice. L1 and L2: convex lenses; P1: pinhole;
BS1 and BS2: 50:50 beam splitters; g1 and g2: diffraction
gratings; M1 and M2: mirrors; CCD for imaging the optical
lattice. The inset shows a sketch of the 2D optical lattice with
g1 and g2 of d = 20 µm, f = 0.9 and z = z′ = LT (p is the
lattice spacing, and q is the width of the lattice). g1 and g2
are movable in order to change the length from each grating
to the CCD.
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Fig. 2. (Color online) Talbot optical lattices. Theoretical
simulation according to Eq. (2) with both gratings (g1 and
g2) have the same period of (a) d = 20 µm, f = 0.9 and (b)
d = 200 µm, f = 0.5 with z = z′ = LT (p = d). The inset
shows a 1D optical lattice with the same conditions but us-
ing only the first grating g1; (c) experimental lattice with the
same conditions with (b). The lattice spacing (p) and width
(q) represent in the unit of grating period (d).

one can obtain the wave function also propagates
along z′-axis through the second grating (g2) but has
diffraction pattern along y′-axis by replacing x in Eq. (1)

by y′, i.e., ψ(y′, z′) =
∑

n

An exp(inkdy
′ − in2πz′

LT

) (Fig. 1).

Therefore, we can produce a 2D optical lattice that can
be formed by the superposition of these two mentioned
wave functions. The intensity pattern produced by these
combined waves can be obtained,

I = |ψ (x, z) + ψ (y′, z′)|
2
. (2)

Our 1D Talbot optical lattice is produced with the 5-
mW green diode laser (λ = 532 nm) as a coherent source
which is expanded by an optical telescope to a diameter
of 20 mm, and then illuminated a diffraction grating
and downstream monitored by the imaging detection,
i.e. charge-coupled device (CCD) camera (DCU223C,
Thorlabs). The telescope is used to expand the laser
beam in order to make the homogeneous light amplitude
distribution for the whole grating which makes the high-
est contrast of the Talbot image. The diffraction grating
(chromium on glass, Edmund Optics inc., d = 200 µm,
f = 0.5) can be rotated with the rotation grating
holder (LCRM2/M, Thorlabs) in order to align it to
the camera axis. The distance from the first grating
(g1) to the CCD (D0+D1) is set to be one Talbot length
(z = LT = 75.2 mm). Therefore, the lattice spacing (p)
is equal to the grating period and the width (q) is half
of the grating period for our demonstrated setup. The
lattice depth can be estimated by measuring the inten-
sity behind the grating with the photodiode (PM120D,
Thorlabs).

The setup can be simply expanded to 2D lattice by
adding an additional grating (g2) as shown in Fig. 1.

This second grating, which is similar to the first one,
is placed and aligned perpendicular to the first grating
(g1) where the grating lines of the first grating and sec-
ond grating are perpendicular to each other or parallel
to the y-axis and x′-axis, respectively (Fig. 1). Then,
the Talbot patterns are combined via the beam splitter
(BS2) and formed the 2D optical lattice on CCD plane
(shown in the inset of Fig. 1). Each grating is placed
above the translation stage (MTS50/M-Z8E, resolution
1.6µm, Thorlabs) in order to adjust the length between
the grating and the CCD (D0+D1). For the 2D optical
lattice, the setup can possibly be set with a 2D cross
grating but in this work we want to be able to demon-
strate for both of 1D and 2D lattices.

We started with the simulations of the Talbot optical
lattice. The 2D optical lattices, simulated using Eq. (2)
are shown in Figs. 2(a) and (b). They were calculated
with the truncated sum at n = ±25. The grating peri-
ods and opening fractions of d = 20 µm, f = 0.9 and
d = 200 µm, f = 0.5, the laser wavelength of 532 nm, and
the longitudinal distance z = z′ = LT were used in the
calculations. The optical lattice shown in Fig. 2(a) has
the square shape of 2 µm width with the lattice spacing
of 20µm which are corresponded to the grating periods
d = 20 µm and opening fractions f = 0.9 of the grating
itself. The inset of Fig. 2 (a) represents a 1D optical
lattice with the same conditions but using only the first
grating (g1). The lattice depth can be varied with the
laser intensity and subsequently calculated to the poten-
tial depth. Also, Fig. 2 (b) is the square optical lattice
with the lattice spacing of 200 µm and width of about
100 µm since the grating has f = 0.5. We proved our
idea by the experiment as shown in Fig. 2(c). Figures
2(b) and (c) are the calculation and experiment with the
same conditions. They show the similar shapes of the
optical lattice therefore our calculations are provable.
An advantage of our Talbot optical lattice is that the
large number of lattice sites can be achievable (18 × 24
lattice sites shown in Figs. 2(b) and (c)). The limit of
the number of lattice sites is only from the grating size.
In our case, we obtained about 127 × 127 lattice sites
or wells. Figure 3 shows the cross section of 2D optical
lattices. The continuous change of the lattice spacings
and lattice widths can be done by changing the longitu-
dinal distances z and z′ for both gratings according to
the fractional Talbot effect[24]. The z and z′ distances
were varied equally from 0.5LT to 1LT (d = 20 µm,
f = 0.9) (Figs. 3(g)−(l)). The changes of z and z′ from
0.96LT to 1LT are corresponded to the lattice width of
q = 0.31d = 6.2 µm to q = 0.10d = 2.0 µm (Fig. 3
(h)−(l)). The width can also be q = 0.49d = 9.8 µm at
z = z′ = 0.9LT (not shown in the figure). Therefore, the
width can be varied from 2.0 to 9.8 µm with the small
distance of about 75 µm(1LT to 0.9LT ). The lattice
spacing is also changed to half of the grating period at
z = z′ = 0.5LT . In contrast to this result, the condition
of d = 20 µm, f = 0.5 gives almost unchanged lattice
width and spacing when z and z′ varied equally from
0.5 LT to 1LT (Figs. 3(a)−(f)). These results show that
the real-time control of the lattice width and spacing can
be done with an asymmetrical grating, that is to say,
f = 0.9. In addition, the center of the lattice is stable
and has no sign ificant translation from the center within
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Fig. 3. Cross section of theoretical 2D optical lattices with
both gratings have the same conditions of (a)−(f) d =
20 µm, f = 0.5 and z, z′ varied symmetrically from 0.5LT −
1LT ; (g)−(l) d = 20 µm, f = 0.9 and z, z′ varied from
0.5LT − 1LT. The horizontal axis represents the lattice spac-
ing from 1.7d to 3.3d. The vertical dashed lines indicate the
center of the lattices for each lattice site.

this small distance.
In conclusion, the 1D and 2D Talbot optical lattices

with real-time control of the lattice spacing and width
are studied in our simulations and experiments. The op-
tical lattice is produced by the Talbot effect. The lattice
spacing and width can be changed with the longitudinal
distances (z and z′) due to the Talbot and fractional
Talbot effect. The results show that a symmetrical grat-
ing such as the opening fraction of 0.5 is not possible for
changing the lattice spacing and width within a short
distance, whereas an asymmetrical grating (f = 0.9)
provides the control change of 2.0 to 9.8 µm with the
small longitudinal distance of about 75 µm. The Talbot
optical lattice overcomes the two counter-propagating
laser beams, i.e., the standing wave of light in three
points. Firstly, the lattice spacing and width can be var-
ied more flexible than λ/2. Secondly, the setup is simple
especially when working with 2D configurations because
the interference fringes or lattice sites can be obtained
with diffraction gratings instead of multiple laser beams.
Thirdly, the setup is more stable because there is no need

to use a mirror or lens to combine the reflected beam to
produce the standing wave of light.

Since the lattice spacing and width of the Talbot opti-
cal lattice can be modified with the longitudinal distance
which also respects to the grating period, one can obtain
almost arbitrary lattice spacings and widths with this
method. The system can easily be extended to 3D sys-
tem by addressing atoms in a different layer of various
longitudinal distances inside the Talbot optical lattice to
obtain 2D lattice with different layers or lattice shapes.
In order to inhibit atoms to locate at the sub-lattice
due to the fractional Talbot effect, we can first align
the exact Talbot length at the center of the ultra cold
atomic cloud (BEC) by a laser with far-off resonance
or RF spectroscopy[29] to avoid the interaction before
the optical lattice is applied. Atoms and molecules in
periodic potentials are an excellent tool for studying
quantum mechanics. Even hot molecules can be used in
an experiment of light-matter interaction with periodic
potential[30,31]. The Talbot optical lattice can be ulti-
mately employed to study quantum tunneling when the
spacing is small and possible quantum register for the
large spacing.
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